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Abstract
In this paper, we study the implementation of Grover’s algorithm using the
system of three identical quantum dots (QDs) coupled by a multi-frequency
optical field. Our result shows that increasing the electric field strength A
speeds up the oscillations of the occupations of the excited states rather than
increasing the occupation probabilities of those states. The larger the detuning
of the field from resonance, the fewer the states which can be used as qubits.
Compared with a multi-frequency external field, a single-frequency external
field will generate much lower amplitudes of the excited states under the same
coupling strength A and interdot Coulomb interaction V . However, when the
three quantum dots are coupled with a single-frequency external field, these
amplitudes increase on increasing the coupling strength A or decreasing the
interdot Coulomb interaction V .

1. Introduction

In 1997 Grover discovered a quantum mechanical algorithm for the search problem, by which
we can find an object in O(

√
N ) quantum steps instead of O(N) classical steps [1, 2]. Differing

from Shor’s algorithm of factorization [3], the superposition of single-particle quantum states
is sufficient in Grover’s algorithm. Leuenberger and Loss proposed that molecular magnets (for
example, Mn12) with non-equidistant energy levels could be used for implementing Grover’s
algorithm with the aid of advanced EPR techniques [4]. These systems can provide the quantum
superposition of states with the same (at least the same magnitude of) amplitude by the use of
a single pulse of a magnetic ac field containing an appropriate number of matched frequencies.
An alternative version of Grover’s algorithm is presented by them in [5] that exploits the
properties of GaAs nuclei where electric quadrupolar interaction results in spin anisotropies
and thus in non-equidistant energy levels. In addition, an exciting experimental work by Yusa
et al [6] suggests that a self-contained NMR semiconductor device can control nuclear spins
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in a nanometre-scale region, which can be applied to quantum search engines [4, 5, 7, 8] using
Grover’s algorithm based on the scheme presented by Leuenberger and Loss [4, 5].

In this paper, we give another solid-state realization of Grover’s algorithm by using the
optically generated electron–hole pairs (excitons) in semiconductor quantum dots. Recently,
the combination of progress in ultrafast opto-electronics and in nanostructure fabrication has
caused much studying of the coherent carrier control in semiconductor quantum dots [9, 10].
Theoretical studies [11–14] indicate that two different mechanisms can contribute to the
coupling between the quantum dots: the resonant Fröster energy transfer and the direct
Coulomb interaction between permanent excitonic dipole moments. When two quantum dots
are separated by a distance less than the wavelength of light, the pulsed optical excitation of
one QD leads to the reemission of a transient electric field which can be reabsorbed by the
second QD; thus a resonant energy-transfer (Fröster) process transfers the excitation by which
an exciton can hop between dots [15].

2. Theoretical model

We consider a system with three identical QDs. Ignoring any constant energy terms, the
Hamiltonian describing the formation of single excitons within the individual QDs and their
interdot hopping is the following [11]:

H (t) = HI (t) + ε

2

3∑

n=1

(e+
n en − hnh+

n ) + 1

2
V

3∑

n,n′
(e+

n hn′ en′h+
n + hne+

n′h+
n′ en′) (1)

where HI (t) is the optical field. e+
n (h+

n ) is the electron (hole) creation operator in the nth QD.
ε is the QD band gap and V is the interdot Coulomb interaction, i.e. the Fröster process. Three
dots are located at the vertices of an equilateral triangle, hence V is not relevant to the quantum
dot 1, 2, or 3.

The study of dynamics of the system would be greatly simplified by introducing the
quasispin operators

Jx = 1
2

3∑

n=1

(e+
n h+

n + hnen), (2)

Jy = − i

2

3∑

n=1

(e+
n h+

n − hnen), (3)

Jz = 1
2

3∑

n=1

(e+
n en − hnh+

n ), (4)

which obey standard angular-momentum commutation relationships [Jα, Jβ] = iJγ , where
(α, β, γ ) represent a cyclic permutation of (x, y, z).

Applying the quasispin operators, the Hamiltonian can be rewritten as

H (t) = HI (t) + εJz + V (J 2 − J 2
z ). (5)

The Hamiltonian includes a nonlinear term originating from Fröster process which results in
non-equidistant energy levels (see figure 1). This is a necessary condition for the scheme of
Leuenberger and Loss. The energy difference between the adjacent states is, therefore, shifted
by ±2V from ε. We define |m〉 ≡ | 3

2 ,− 3
2 〉 ≡ |0〉, |m〉 ≡ | 3

2 ,− 1
2 〉 ≡ |1〉, |m〉 ≡ | 3

2 , 1
2 〉 ≡ |2〉,

|m〉 ≡ | 3
2 , 3

2 〉 ≡ |3〉, as the vacuum of the exciton, the single-exciton state, the biexciton state
and the triexciton state, respectively.
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Figure 1. Schematic energy level diagram of the three quantum dots with (right) and without (left)
the Fröster process.

3. Implementation of Grover’s algorithm in three quantum dots coupled by a
multi-frequency optical field

As the first step in deducing our scheme for implementing Grover’s algorithm, we consider
a multiphoton transition scheme for the coherent population of the Jz eigenstates |m〉 of a
quasispin J = 3

2 . To induce the nth order transition from the vacuum state to the excited states
|m〉, the field contains an appropriate number of frequencies {ωk},
HI (t) = Aei(ω1t+φ1)|− 3

2 〉〈− 1
2 | + Aei(ω2t+φ2)|− 1

2 〉〈 1
2 | + Aei(ω3t+φ3)| 1

2 〉〈 3
2 | + H.c., (6)

where ω1 = ε + 2V − δ1, ω2 = ε + δ1 − δ2, ω3 = ε − 2V + δ2 − δ3 and δ1, δ2, δ3 is the
detuning of the field from resonance (see figure 1). A gives the electron–photon coupling and
the incident electric field strength.

The time-evolution of the quantum state is governed by the Schödinger equation (where
natural units are used throughout)

i
d

dt
|	(t)〉s = H (t)|	(t)〉s. (7)

Here we introduce the unitary transformation U :

|	〉s = U(t)|	〉U , (8)

where we define the state in the rotating frame by |	〉U = U+|	〉s . Thus, the left-hand side of
equation (7) transforms into

i
∂

∂ t
|	(t)〉s = i

(
U

∂|	〉U

∂ t
+ ∂U

∂ t
|	〉U

)
, (9)

and the right-hand side of equation (7) transforms into

Hs|	(t)〉s = HU(t)|	(t)〉U . (10)

Combining both sides of equations (9) and (10), we obtain

i
∂|	〉
∂ t

=
(

U−1 HU − iU−1 ∂U

∂ t

)
|	〉U = HU |	〉U . (11)

If we insert

U(t) = ei[(ω1+ω2+ω3)t+(φ1+φ2+φ3)]/2|− 3
2 〉〈− 3

2 | + ei[(ω3+ω2−ω1)t+(φ3+φ2−φ1)]/2|− 1
2 〉〈− 1

2 |
+ ei[(ω3−ω2−ω1)t+(φ3−φ2−φ1)]/2| 1

2 〉〈 1
2 | + e−i[(ω1+ω2+ω3t+(φ1+φ2+φ3)]/2| 3

2 〉〈 3
2 | (12)
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we get the effective Hamiltonian in the rotating frame:

HU =

⎛

⎜⎜⎝

3
2 V − δ3

2

√
3A 0 0√

3A 3
2 V + δ1 − δ3

2 2A 0

0 2A 3
2 V + δ2 − δ3

2

√
3A

0 0
√

3A 3
2 V + δ3

2

⎞

⎟⎟⎠ . (13)

Here δ1, δ2 and δ3 are the detuning parameters. We note the importance of the unitary
transformation: the new Hamiltonian HU is time independent. From a practical point of view,
the parameters A and δ are adjustable in the experiment to give control over the system of QDs.

In resonance δ1 = δ2 = δ3 = 0, diagonalizing Hamiltonian (13) leads us to the following
results:

|ϕ1,2〉 = η1,2

[∣∣∣∣−
3

2

〉
+ E1,2 − 3

2 V√
3A

∣∣∣∣−
1

2

〉
+ E1,2 − 3

2 V√
3A

∣∣∣∣
1

2

〉
+

∣∣∣∣
3

2

〉]
, E1 = 3

2 (2A + V ),

E2 = 1
2 (2A + 3V ),

|ϕ3,4〉 = η3,4

[∣∣∣∣−
3

2

〉
+ E3,4 − 3

2 V√
3A

∣∣∣∣−
1

2

〉
− E3,4 − 3

2 V√
3A

∣∣∣∣
1

2

〉
−

∣∣∣∣
3

2

〉]
,

E3 = − 3
2 (2A − V ), E4 = 1

2 (−2A + 3V ),

(14)

where the normalization constants

ηi = 1√
2

[
1 +

(
Ei − 3

2 V√
3A

)2]− 1
2

(15)

and i = 1, 2, 3, 4.
In general, the total wavefunction can be expressed as

|	(t)〉U =
∑

k

∑

j

Ck Akj e
−iEk t |m j〉. (16)

For Grover’s algorithm, we must produce a superposition in which the amplitude of the N basic
states is equal. We start from the initial state |	(0)〉 = |− 3

2 〉, i.e. we choose the zero-exciton
state as the initial state. In this case, the wave function |	(t)〉U is spanned by the following
coefficients Ck and Akj :

C1 = 1

2
√

2
, C2 =

√
3/2

2
, C3 = 1

2
√

2
, C4 =

√
3/2

2
, (17)

and

A =

⎛

⎜⎜⎜⎜⎜⎜⎝

η1 η1
E1− 3

2 V√
3A

η1
E1− 3

2 V√
3A

η1

η2 η2
E2− 3

2 V√
3A

η2
E2− 3

2 V√
3A

η2

η3 η3
E3− 3

2 V√
3A

−η3
E3− 3

2 V√
3A

−η3

η4 η4
E4− 3

2 V√
3A

−η4
E4− 3

2 V√
3A

−η4

⎞

⎟⎟⎟⎟⎟⎟⎠
. (18)

The probability of finding the state |m〉 is given by

ρ(m) = |〈m|	(t)〉|2 =
∣∣∣∣
∑

k

Ck Akme−iEk t

∣∣∣∣
2

. (19)

Figure 2 shows that the dynamic evolution of the system is characterized by the oscillation
between |− 3

2 〉 and | 3
2 〉 with a much higher probability. Increasing the electric field strength A

speeds up the oscillations of the occupations of the states. The larger A is, the larger the νRabi
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Figure 2. Time-evolution of the vacuum state |− 3
2 〉 (broad curve), the one-exciton state |− 1

2 〉
(dashed–dotted curve), the biexciton state | 1

2 〉 (dotted curve), and the triexciton state | 3
2 〉 (solid

curve) in three coupled QDs, as a function of time. The energy is in units of the band gap ε and
ε = 1. The initial state |	(0)〉 = |− 3

2 〉 in all figures except figure 7. (a) A = 0.001ε, V = 0.1ε,
(b) A = 0.01ε, V = 0.1ε, (c) A = 0.02ε, V = 0.1ε.

Figure 3. Time-evolution of the population of the vacuum state |− 3
2 〉 (broad curve), the one-exciton

state |− 1
2 〉 (dashed–dotted curve), the biexciton state | 1

2 〉 (dotted curve), and the triexciton state | 3
2 〉

(solid curve) in three coupled QDs. The parameters are δ1 = 2δ2 = 3δ3 = 0.03ε, A = 0.01ε, and
V = 0.1ε.

that can be achieved. However, it does not increase the amplitudes of the single-exciton state
|− 1

2 〉 and the biexciton state | 1
2 〉 as we expect.

Then we consider the detuning of the field from resonance, δ1 = 2δ2 = 3δ3 = 0.03ε.
Figure 3 shows that the resolution for identifying |m〉 is still sufficient and quite unexpectedly a
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Figure 4. Grover’s algorithm calculated by means of the analytical solution of equation (7). The
probabilities of the vacuum state |− 3

2 〉 (broad curve), the one-exciton state |− 1
2 〉 (dashed–dotted

curve), the biexciton state | 1
2 〉 (dotted curve), and the triexciton state | 3

2 〉 (solid curve) in three
coupled QDs as a function of time: (a) εt = (120–160), (b) εt = (180–200). The parameters are
δ1 = 2δ2 = 3δ3 = 0.03ε, A = 0.01ε, and V = 0.1ε.

Figure 5. Time-evolution of the population of the vacuum state |− 3
2 〉 (broad curve), the one-exciton

state |− 1
2 〉 (dashed–dotted curve), the biexciton state | 1

2 〉 (dotted curve), and the triexciton state | 3
2 〉

(solid curve) in three coupled QDs. The parameters are δ1 = 2δ2 = 3δ3 = 0.06ε, A = 0.01ε, and
V = 0.1ε.

larger probability of biexciton state | 1
2 〉 can be achieved. Moreover, we can decode the number

we want depending on a specific duration of the pulse (duration of the pulse εt = 120–160 for
1011, εt = 180–200 for 1101; see figures 4(a) and (b), respectively), where the probability
|am|2 � 0.1 is denoted 1 otherwise 0. When we enlarge the detuning of the field from
δ1 = 2δ2 = 3δ3 = 0.03ε to δ1 = 2δ2 = 3δ3 = 0.06ε, the probability of the vacuum state
|− 3

2 〉 is much higher than those of the three excited states (see figure 5). This means we have
indeed three states which can be used as qubits other than four states (or we can say the number
we decode is always ×××1, where × is 0 or 1). Furthermore, the larger the detuning of the
field from resonance, the fewer the states which can be used as qubits. When we enlarge the
detuning up to δ1 = 2δ2 = 3δ3 = 0.09ε, according to our assumption, figure 6 shows the
number we decode only can be 00×1. As a comparison to see the influence of the initial state
on the implementation of Grover’s algorithm, our calculation shows that the different initial
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Figure 6. Time-evolution of the population of the vacuum state |− 3
2 〉 (broad curve), the one-exciton

state |− 1
2 〉 (dashed–dotted curve), the biexciton state | 1

2 〉 (dotted curve), and the triexciton state | 3
2 〉

(solid curve) in three coupled QDs. The parameters are δ1 = 2δ2 = 3δ3 = 0.09ε, A = 0.01ε, and
V = 0.1ε.

Figure 7. The implementation of Grover’s algorithm with the different initial state. The probability
of the one-exciton state |− 1

2 〉 (dashed–dotted curve), the biexciton state | 1
2 〉 (dotted curve), and the

triexciton state | 3
2 〉 (solid curve) in three coupled QDs as the function of time εt = (180 200):

(a) the initial state |	(0)〉 = |− 1
2 〉, (b) the initial state |	(0)〉 = |− 3

2 〉. The parameters are
δ1 = 2δ2 = 3δ3 = 0.03ε, A = 0.01ε, and V = 0.1ε.

state will change the results of decoding. For the initial state |	(0)〉 = |− 1
2 〉, the duration

of the pulse εt = (180–200) will decode the number 0010 instead of 1101 for initial state
|	(0)〉 = |− 3

2 〉 (see figures 7(a) and (b), respectively).
The numerical calculations have been performed for all of the conditions mentioned above.

As usual, we write

|	(t)〉 =
∑

m

cm(t)e−iεm t |m〉, (20)

where Ĥ0|m〉 = εm|m〉 and Ĥ0 = εJz + V (J 2 − J 2
z ). Thus the time-dependent Schrödinger

equation is reduced to four first-order differential equations. Using the rescaled parameters
A′ = A/ε, δ′

1 = δ1/ε, δ
′
2 = δ2/ε, δ

′
3 = δ3/ε, and τ = εt , these four linear differential
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Figure 8. (a) Exact numerical and (b) analytical results of the time-evolution of the probability the
vacuum state |− 3

2 〉 (broad curve), the one-exciton state |− 1
2 〉 (dashed–dotted curve), the biexciton

state | 1
2 〉 (dotted curve), and the triexciton state | 3

2 〉 (solid curve) in three coupled QDs. The
parameters are δ1 = 2δ2 = 3δ3 = 0.03ε, A = 0.01ε, and V = 0.1ε.

equations can be expressed in terms of reduced units as follows:

i
∂

∂τ
a− 3

2
(τ ) = √

3A′a− 1
2
(τ )e−iδ′

1τ ,

i
∂

∂τ
a− 1

2
(τ ) = 2A′a 1

2
(τ )e−i(δ′

2−δ′
1)τ + √

3A′a− 3
2
(τ )eiδ′

1τ ,

i
∂

∂τ
a 1

2
(τ ) = √

3A′a 3
2
(τ )e−i(δ′

3−δ′
2)τ + 2A′a− 1

2
(τ )e−i(δ′

1−δ′
2)τ ,

i
∂

∂τ
a 3

2
(τ ) = √

3A′a 1
2
(τ )e−i(δ′

2−δ′
3)τ .

(21)

As an example, we give the numerical and the analytical solutions of equation (7) with the
parameters A = 0.01ε, V = 0.1ε and δ1 = 2δ2 = 3δ3 = 0.03ε. Figure 8 shows the excellent
agreement for the probabilities of the four states.

4. Greenberger–Horne–Zeilinger state generation in three QDs

Next we describe the generation of the Greenberger–Horne–Zeilinger (GHZ) state [16]. To
this end we assume that the states |0〉 and |1〉 represent the vacuum state and the excited state,
respectively. The GHZ state is given by

|	GHZ〉 = 1√
2

(|0⊗N 〉 + |1⊗N 〉) , (22)

which means a coherent superposition state of all QDs in mode |0〉 and all QDs in mode |1〉.
This state is also known as the Schrödinger cat state, in honour of Schrödinger’s quantum
superposition of states-cat states. We can rewrite the GHZ state in the quasispin representation
such that

|	GHZ〉 = 1√
2

(|− 3
2 〉 + | 3

2 〉
)
. (23)

The probability to achieve the GHZ state |	GHZ〉 at time t for our general solution of
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r
r

Figure 9. Generation of the GHZ state with different coupling strengths: (a) A = 0.01ε,
(b) A = 0.02ε. The parameters are δ1 = δ2 = δ3 = 0 and V = 0.1ε.

equation (7) is seen to be

|〈	GHZ|	(t)〉|2 = 1
2

∣∣∣∣
∑

k

Ck(Ak1 + Ak4)e
−iEk t

∣∣∣∣
2

. (24)

Figure 9 shows the probability to find the GHZ state in the QDs with various coupling strength
A under the resonance condition. We also assume the initial state |	(0)〉 = |− 3

2 〉. Note that the
GHZ state generation time is significantly shortened by applying a stronger laser pulse. This is
important because a short pulse length for GHZ state generation is fundamental to observe this
high entangled state experimentally.

5. Implementation of Grover’s algorithm in three QDs coupled by a single-frequency
optical field

Finally we consider the case when the QDs are coupled by an optical field with a single
frequency ω. In this case, the Hamiltonian in the rotating frame (|	(t)〉s = U(t)|	(t)〉U =
e−iωJz t |	(t)〉U ) becomes [11]

HU = (ε − ω)Jz + V (J 2 − J 2
z ) + AJ+ + AJ− = �ω Jz + V (J 2 − J 2

z ) + AJ+ + AJ−. (25)

Here �ω = ε − ω is the detuning parameter. Following [11], we obtain the effective
Hamiltonian:

HU =

⎛
⎜⎜⎝

3V
2 − �ω

√
3A 0 0√

3A 7V
2 − �ω

2 2A 0

0 2A 7V
2 + �ω

2

√
3A

0 0
√

3A 3V
2 + �ω

2

⎞
⎟⎟⎠ . (26)

In resonance �ω = 0, diagonalization leads us to the following eigenenergies:

E1,2 = 5V

2
+ A ±

√
(V + A)2 + 3A2,

E3,4 = 5V

2
− A ±

√
(V − A)2 + 3A2,

(27)
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Figure 10. Time-evolution of the one-exciton state |− 1
2 〉 in three coupled QDs: (a) A = 0.01ε, V =

0.1ε, (b) A = 0.02ε, V = 0.1ε, (c) A = 0.01ε, V = 0.2ε.

with eigenvectors

|ϕ1,2〉 = η1,2

[∣∣∣∣−
3

2

〉
+ E1,2 − 3

2 V√
3A

∣∣∣∣−
1

2

〉
+ E1,2 − 3

2 V√
3A

∣∣∣∣
1

2

〉
+

∣∣∣∣
3

2

〉]
,

|ϕ3,4〉 = η3,4

[∣∣∣∣−
3

2

〉
+ E3,4 − 3

2 V√
3A

∣∣∣∣−
1

2

〉
− E3,4 − 3

2 V√
3A

∣∣∣∣
1

2

〉
−

∣∣∣∣
3

2

〉]
,

(28)

where the coefficients

ηi = 1√
2

[
1 +

(
Ei − 3

2 V√
3A

)2]− 1
2

, (29)

with i = 1, 2, 3, 4. The total wave function and the probability of finding the state |m〉 can
also be expressed as equations (16) and (19). We vary the coupling strength A and the interdot
Coulomb interaction V to show how the parameters can affect the implementation of Grover’s
algorithm. Obviously, the probabilities of finding the excited states increase by increasing A
or reducing V (see figure 10). The competition of these two terms is usually driven by the
competition between kinetic and interaction energy which is fundamental to quantum phase
transitions [17]. As an instance to see the advantage of the use of the multiphoton transition
schemes proposed by Leuenberger and Loss in [4] and [5] on the implementation of Grover’s
algorithm, figure 11 shows that when the system is coupled by a single-frequency external
field, the probabilities of the excited states are much lower than those of the system coupled
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Figure 11. The probabilities of (a) the vacuum state |− 3
2 〉, (b) the one-exciton state |− 1

2 〉, (c) the

biexciton state | 1
2 〉, (d) the triexciton state | 3

2 〉 in the three QDs coupled by a single-frequency
external field. The parameters are A = 0.01ε, V = 0.1ε.

by a multi-frequency field with the same condition. Therefore, the contribution of the triple
quantum coherence between |− 3

2 〉 and | 3
2 〉 can be neglected in the case of weak coupling. Our

model also can be used to explain the result reported in [6], in which at low B1, spectra of �R
show three oscillations corresponding to the multi-frequency excitation. Only by increasing B1

to a large value could a new peak corresponding to the single-frequency excitation appear.

6. Conclusions

Due to the potential scalability and long decoherence times of the electron spins [11], the
solid-state QD system has been extensively studied for the realization of a quantum computer.
Experimental observation of these quantum dots should be possible with present ultrafast
semiconductor optical techniques. As an instance, for GaAs QDs ε = 1.4 eV corresponds to a
resonant frequency ω = 2 × 10−15 s−1. Femtosecond spectroscopy could satisfy this system
obviously. A monolithic semiconductor device integrated with a point contact channel [6] may
be another suitable experimental system for our Hamiltonian. The channel consists of Ga69,
Ga71 and As75, each having total spin I = 3/2. Under the static magnetic field B0, each nuclide
has four equally spaced energy states |m〉 = |3/2〉, |1/2〉, |−1/2〉, |−3/2〉. In the meantime,
the nuclei experience the effects of an electric field gradient due to their host crystal, which
shifts the energy states through the electric quadrupolar interaction by energies −V and V for
|±3/2〉 and |±1/2〉. The effect results in non-equidistant energy levels, which agrees with our
model (see figure 1) for implementing Grover’s algorithm.

In summary, we have studied the implementation of Grover’s algorithm using the system of
three identical QDs coupled by a multi-frequency external field based on the proposal provided
by Leuenberger and Loss [4, 5] by means of analytically solving the Schrödinger equation in
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the rotating frame. Our result shows that increasing the electric field strength A speeds up
the oscillations of the occupations of the excited states rather than increases the occupation
probabilities of those states. The larger the detuning of the field from resonance, the fewer the
states which can be used as qubits. We also have considered the probability of finding the GHZ
state for this system: the GHZ state generation time is significantly shortened by applying
a stronger laser pulse. Compared with a multi-frequency external field, a single-frequency
external field will generate much lower amplitudes of the excited states under the same coupling
strength A and interdot Coulomb interaction V . However, these amplitudes increase on
increasing the coupling strength A or decreasing the interdot Coulomb interaction V .
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